SMBH goes Missing!!


Valued Senior Member

Somehow, a Monstrous Supermassive Black Hole Has Gone Missing

18 DECEMBER 2020
The Universe is full of galaxy clusters, but Abell 2261 is in a class of its own. In the galaxy in the centre of the cluster, where there should be one of the biggest supermassive black holes in the Universe, astronomers have been able to find no trace of such an object.

And a new search has only made the absence more puzzling: if the supermassive black hole got yeeted out into space, it should have left evidence of its passage. But there's no sign of it in the material surrounding the galactic centre, either.

But this means that constraints can be placed on what the supermassive black hole - if it is there, evading detection - is doing.

Galaxy clusters are the largest known gravitationally bound structures in the Universe. Typically, they're groups of hundreds to thousands of galaxies that are bound together, with one huge, abnormally bright galaxy at or close the centre, known as the brightest cluster galaxy (BCG).

more at link..................

the paper:

Chandra Observations of Abell 2261 Brightest Cluster Galaxy, a Candidate Host to a Recoiling Black Hole:

We use Chandra X-ray observations to look for evidence of a recoiling black hole from the brightest cluster galaxy in Abell 2261 (A2261-BCG). A2261-BCG is a strong candidate for a recoiling black hole because of its large, flat stellar core, revealed by Hubble Space Telescope imaging observations. We took 100-ksec observations with Chandra and combined it with 35 ksec of archival observations to look for low-level accretion onto a black hole of expected mass M∼1010M⊙ that could possibly be located in one of four off-center stellar knots near the galaxy's center or else in the optical center of the galaxy or in the location of radio emission. We found no X-ray emission arising from a point source in excess of the cluster gas and can place limits on the accretion of any black hole in the central region to a 2-7 keV flux below 4.3×10−16ergs−1cm−2, corresponding to a bolometric Eddington fraction of about 10−6. Thus there is either no 1010M⊙ black hole in the core of A2261-BCG, or it is accreting at a low level. We also discuss the morphology of the X-ray emitting gas in the cluster and how its asymmetry is consistent with a large dynamic event.
extract from article....

"Since black holes give off no detectable radiation on their own, and we can usually only detect them when they're feeding, it's possible there is a black hole at the centre of A2261-BCG. If there is, it's either quiescent, or accreting matter too slowly to be detected by our current instruments."

That's my answer for what its worth.
Question before I resume festivities....:p
Would our own SMBH be able to be detected from another distant galaxy, remembering that is is also relatively dormant?