# Zeta of "1"

Discussion in 'Physics & Math' started by BrianHarwarespecialist, Jun 11, 2015.

Messages:
2,527
Horsecrap.

3. ### rpennerFully WiredRegistered Senior Member

Messages:
4,833
There are an infinite set of numbers are close to any number. Nothing connects these approximations other than closeness to the chosen target, and human aesthetics.

$\gamma \approx \frac{\pi}{\sqrt{2}} - \frac{\pi^2}{6}$ Error: -7.08 × 10^-4 (Yours)

$\gamma \approx \frac{ \pi}{2 e}$ Error: 6.48 × 10^-4 (author unknown)

$\gamma \approx \frac{ \ln 9 }{\ln 45 }$ Error: -1.07 × 10^-5

$\gamma \approx \sqrt[4]{\frac{111}{10^3}}$ Error: -9.79 × 10^-6 (M. Hudson)

$\gamma \approx .1^{-\frac{.2}{.3-4^{-\left(.5^{-\left(\left(6 \times 7 \right)^{-.8}\right)} \right)}-.9}} = 10^{- \frac{1}{3+5 \times 2^{-2^{1+42^{-\frac{4}{5}}}}}}$ Error: -5.01 × 10^-10 (Gerrit de Blaauw's ordered pan-digital approximation)

$\gamma \approx \frac{2341}{ 1492 \, e}$ Error: -1.68 × 10^-10

$\gamma \approx \frac{ \ln \left( 9 + \frac{1}{4821} \right) }{ \ln \left( 45 - \frac{1}{729} \right) }$ Error: -2.03 × 10^-11

$\gamma \approx \frac{ 47712}{1069 (\pi^4 - e^3) }$ Error: -1.00 × 10^-11

$\gamma \approx .8^{.2674^9 - \frac{1}{3}} - .5$ Error: -4.29 × 10^-12 (Richard Sabey's Pandigital approximation)

$\gamma \approx \ln \left( \frac{3671}{17458 }+ \frac{\pi}{2} \right)$ Error: -2.82 × 10^-12

$\gamma \approx \sqrt{\frac{1}{\pi} + \frac{3046}{204869} }$ Error: 9.93 × 10^-14

$\gamma \approx \frac{287443}{270955 \, \ln ( 2 \pi ) }$ Error: 6.59 × 10^-15

$\gamma \approx \frac{3731208726}{1587971713} - \sqrt{\pi}$ Error: -4.65 × 10^-22

Last edited: Jun 24, 2015

5. ### rpennerFully WiredRegistered Senior Member

Messages:
4,833
$\gamma \approx \frac{1}{2} \left( \zeta( 1 + \frac{1}{70000}) + \zeta(1 - \frac{1}{70000}) \right)$ Error: -9.89 × 10^-13

$\gamma \approx 1 - \sqrt{ \frac{328}{1835} }$ Error: -9.42 × 10^-13

$\gamma \approx \sqrt[5]{\frac{1332833}{136559}} - 1$ Error: -4.83 × 10^-15

$\gamma \approx \sqrt[3]{\frac{2394859}{66914}} - e$ Error: 1.43 × 10^-15

$\gamma \approx e - \sqrt[9]{ \frac{181762068}{192235}}$ Error: -2.95 × 10^-17

$\gamma \approx \pi - \sqrt[5]{ \frac{75428995}{680188} }$ Error: Error: 2.85 × 10^-17

$\gamma \approx \pi - \sqrt[6]{ \frac{2791879080}{9817601} }$ Error: Error: 1.17 × 10^-19

$\gamma \approx 1 - \sqrt[12]{\frac{25 \times 18934}{14512951059}}$ Error: 7.33 × 10^-22

$\gamma \approx \sqrt[12]{\frac{54427105845795}{7779823}} - \pi$ Error: -5.72 × 10^-24

$\gamma \approx \sqrt[12]{\frac{16397682819857}{9993800}} - e$ Error: 3.01 × 10^-24

$\gamma \approx \sqrt[11]{\frac{13654140881941}{7258095}} - \pi$ Error: 2.41 × 10^-24

$\gamma \approx \pi - \sqrt[9]{ \frac{3652901706851}{761730151} }$ Error: Error: 3.37 × 10^-25

$\gamma \approx \sqrt[5]{\frac{586319788321}{60072975364}} - 1$ Error: 4.74 × 10^-26

$\gamma \approx \pi - \sqrt[5]{ \frac{20551896232228}{185328641783} }$ Error: 7.16 × 10^-28

$\gamma \approx \sqrt[11]{\frac{193037381245234}{1284811801459}} - 1$ Error: -7.17 × 10^-31

$\gamma \approx \sqrt[10]{\frac{809275355576308143}{5356565981317}} - e$ Error: 1.29 × 10^-34

$\gamma \approx \frac{1}{2} \left( \zeta( 1 + 10^{-16}) + \zeta(1 - 10^{-16}) \right)$ Error: -4.85 × 10^-35

$\gamma = \lim_{x\to 0} \frac{1}{2} \left( \zeta( 1 + x) + \zeta(1 - x) \right)$

I hope this illustrates that the number of symbols in an approximation and the logarithm of the absolute error are roughly proportional when there is no connection between the form of the approximation and the targeted number. But when there is a connection, an exact formula can be written with a finite number of symbols.