Why we should be racist- Speciation

Discussion in 'Biology & Genetics' started by The_King, May 27, 2003.

  1. The_King Destroy the jews. Registered Senior Member



    What Is a Species?

    One of the best definitions is that of the evolutionary biologist Ernst Mayr:
    A species is an actually or potentially interbreeding population that does not interbreed with other such populations when there is opportunity to do so.
    Note: sometimes breeding may take place (as it can between a horse and a donkey) but if so, the offspring are not so fertile and/or well adapted as the parents (the mule produced is sterile).

    Allopatric Speciation: the Role of Isolation in Speciation

    The formation of two or more species often (some workers think always!) requires geographical isolation of subpopulations of the species. Only then can natural selection or perhaps genetic drift produce distinctive gene pools.

    It is no accident that the various races (or "subspecies") of animals almost never occupy the same territory. Their distribution is allopatric ("other country").

    The seven distinct subspecies or races of the yellowthroat Geothlypis trichas in the continental U.S. would soon merge into a single homogeneous population if they occupied the same territory and bred with one another.

    Please Register or Log in to view the hidden image!

    Darwin's Finches
    As a young man of 26, Charles Darwin visited the Galapagos Islands off the coast of Ecuador. Map

    Among the animals he studied were 13 species of finches found nowhere else on earth.

    Some have stout beaks for eating seeds of one size or another.
    Others have beaks adapted for eating insects.
    One (#7) has a beak like a woodpecker's. It uses it to drill holes in wood, but lacking the long tongue of a true woodpecker, it uses a cactus spine held in its beak to dig the insect out.
    One (#12) looks more like a warbler than a finch, but its eggs, nest, and courtship behavior is like that of the other finches.
    Darwin's finches. The finches numbered 1-7 are ground finches. They seek their food on the ground or in low shrubs. Those numbered 8-13 are tree finches. They live primarily on insects.

    Please Register or Log in to view the hidden image!

    1. Large cactus finch (Geospiza conirostris)
    2. Large ground finch (G. magnirostris)
    3. Medium ground finch (Geospiza fortis)
    4. Cactus finch (G. scandens)
    5. Sharp-beaked ground finch (G. difficilis)
    6. Small ground finch (G. fuliginosa)
    7. Woodpecker finch (Cactospiza pallida)
    8. Vegetarian tree finch (Platyspiza crassirostris)
    9. Medium tree finch (Camarhynchus pauper)
    10. Large tree finch (Camarhynchus psittacula)
    11. Small tree finch (C. parvulus)
    12. Warbler finch (Certhidia olivacea)
    13. Mangrove finch (Cactospiza heliobates)

    (From BSCS, Biological Science: Molecules to Man, Houghton Mifflin Co., 1963)
    Since Darwin's time, these birds have provided a case study of how a single species reaching the Galapagos from Central or South America could - over a few million years - give rise to the 13 species that live there today.
    Five factors have been identified that may contribute to speciation.

    1. Ecological opportunity.
    When the ancestor of Darwin's finches reached the Galapagos, it found
    no predators (There were no mammals and few reptiles on the islands.)
    few, if any, competitors. There were only a handful of other types of songbirds. In fact, if true warblers or woodpeckers had been present, their efficiency at exploiting their niches would surely have prevented the evolution of warblerlike and woodpeckerlike finches.
    2. Geographical Isolation (allopatry).
    The proximity of the various islands has permitted enough migration of Darwin's finches between them to enable distinct island populations to arise. But the distances between the islands is great enough to limit interbreeding between populations on different islands. This has made possible the formation of distinctive subspecies (= races) on the various islands.

    The importance of geographical isolation is illuminated by a single, fourteenth, species of Darwin's finches that lives on Cocos Island, some 500 miles to the northeast of the Galapagos.
    The first immigrants there must also have found relaxed selection pressures with few predators or competitors.

    How different the outcome, though. Where one immigrant species gave rise to at least 13 on the scattered Galapagos Islands, no such divergence has occurred on the single, isolated Cocos Island.

    3. Evolutionary Change
    In isolation, changes in the gene pool can occur through some combination of
    natural selection
    genetic drift
    founder effect
    These factors may produce distinct subpopulations on the different islands. So long as they remain separate (allopatric) we consider them races or subspecies. In fact, they might not be able to interbreed with other races but so long as we don't know, we assume that they could.
    How much genetic change is needed to create a new species?

    Perhaps not as much as you might think. For example, changes at one or just a few gene loci might do the trick. For example, a single mutation altering flower color or petal shape could immediately prevent cross-pollination between the new and the parental types (a form of prezygotic isolating mechanism).
    4. Reunion
    The question of their status - subspecies or true species - is resolved if they ever do come to occupy the same territory again (become sympatric). If successful interbreeding occurs, the differences will gradually disappear, and a single population will be formed again. Speciation will not have occurred.
    If, on the other hand, two subspecies reunite but fail to resume breeding, speciation has occurred and they have become separate species.

    An example: The medium tree finch Camarhynchus pauper is found only on Floreana Island. Its close relative, the large tree finch, Camarhynchus psittacula, is found on all the central islands including Floreana.
    Were it not for its presence on Floreana, both forms would be considered subspecies of the same species. Because they do coexist and maintain their separate identity on Floreana, we know that speciation has occurred.

    Isolating Mechanisms

    What might keep two subpopulations from interbreeding when reunited geographically? There are several mechanisms.
    Prezygotic Isolating Mechanisms
    These act before fertilization occurs.
    Failure to elicit mating behavior. On Floreana, C. psittacula has a longer beak than C. pauper, and the Grants have demonstrated that beak size is an important criterion by which Darwin's finches choose their mates.
    Two subpopulations may occupy different habitats in the same area and thus fail to meet at breeding time.
    In plants, a shift in the time of flowering can prevent pollination between the two subpopulations.
    Structural differences in the sex organs may become an isolating mechanism.
    The sperm may fail to reach or fuse with the egg.
    Postzygotic Isolating Mechanisms
    These act even if fertilization does occur.
    Even if a zygote is formed, genetic differences may have become so great that the resulting hybrids are less viable or less fertile than the parental types.

    Although hybridization in angiosperms may also cause reduced fertility, it is sometimes followed by a doubling of the chromosome number. The resulting polyploids are now fully fertile with each other although unable to breed with either parental type. A new species has been created. Link to a discussion of polyploidy and example of its role in speciation.

    5. Intense Competition.
    The process of speciation is often hastened when two formerly isolated groups are reunited. Even if they no longer interbreed, they are probably still similar in many ways, including their requirements for the necessities of life.
    Thus the reuniting of the two groups may create an intense selection pressure leading to one of two possible outcomes.

    The competition may be so intense that one species becomes eliminated entirely; that is, it is driven to extinction on that island. This may have occurred to C. pauper on some of the central islands.
    Alternatively, the increased selection pressure may lead to character displacement and so lessen the competition between them.
    The range of beak sizes of C. pauper on Floreana and C. psittacula on Isabela is roughly the same. This reflects the fact that the two species feed on the same type and size of insect.

    On Floreana, however, character displacement has occurred: C. psittacula has a substantially larger beak than C. pauper does, and thus differs enough in its food requirements for the two species to coexist there.
    The histogram shows the data. The larger beak of C. psittacula on Floreana reduces the competition with C. pauper (which is not found on Isabela). (Redrawn with permission from David Lack, Darwin's Finches, Cambridge Univ. Press, 1947. The number of collected specimens (16) of C. psittacula on Floreana was too small to compute a reliable percentage but all fell within the range indicated.)

    Adaptive Radiation

    The process described above can occur over and over. In the case of Darwin's finches, it must have been repeated a number of times forming new species that gradually divided the available habitats between them. From the first arrival have come a variety of ground-feeding and tree-feeding finches as well as the warblerlike finch and the tool-using woodpeckerlike finch.
    The formation of a number of diverse species from a single ancestral one is called an adaptive radiation.

    House mice on the island of Madeira
    A recent (13 January 2000) report in Nature describes a study of house mouse populations on the island of Madeira off the Northwest coast of Africa. These workers (Janice Britton-Davidian et al) examined the karyotypes of 143 house mice (Mus musculus domesticus) from various locations along the coast of this mountainous island. Their findings:
    There are 6 distinct populations (shown by different colors)
    Each of these has a distinct karyotype, with a diploid number less than the "normal" (2N=40).
    The reduction in chromosome number has occurred through Robertsonian fusions. Mouse chromosomes tend to be acrocentric; that is, the centromere connects one long and one very short arm. Acrocentric chromosomes are at risk of translocations that fuse the long arms of two different chromosomes with the loss of the short arms.
    The different populations are allopatric; isolated in different valleys leading down to the sea.
    The distinct and uniform karyotype found in each population probably arose from genetic drift rather than natural selection.
    The 6 different populations are technically described as races because there is no opportunity for them to attempt interbreeding.
    However, they surely meet the definition of true species. While hybrids would form easily (no prezygotic isolating mechanisms), these would probably be infertile as proper synapsis and segregation of such different chromosomes would be difficult when the hybrids attempted to form gametes by meiosis.
    Sympatric Speciation
    Sympatric speciation refers to the formation of two or more descendant species from a single ancestral species all occupying the same geographic location.
    Some evolutionary biologists don't believe that it ever occurs. They feel that interbreeding would soon eliminate any genetic differences that might appear.

    Please Register or Log in to view the hidden image!

    But there is some compelling (albeit indirect) evidence that sympatric speciation can occur.
    The three-spined sticklebacks, freshwater fishes, that have been studied by Dolph Schluter (who received his Ph.D. for his work on Darwin's finches with Peter Grant) and his current colleagues in British Columbia, provide an intriguing example that is best explained by sympatric speciation.

    They have found:
    Two different species of three-spined sticklebacks in each of five different lakes.
    a large benthic species with a large mouth that feeds on large prey in the littoral zone
    a smaller limnetic species - with a smaller mouth - that feeds on the small plankton in open water.
    DNA analysis indicates that each lake was colonized independently, presumably by a marine ancestor, after the last ice age.
    DNA analysis also shows that the two species in each lake are more closely related to each other than they are to any of the species in the other lakes.
    Nevertheless, the two species in each lake are reproductively isolated; neither mates with the other.
    However, aquarium tests showed that
    the benthic species from one lake will spawn with the benthic species from the other lakes and
    likewise the limnetic species from the different lakes will spawn with each other.
    These benthic and limnetic species even display their mating preferences when presented with sticklebacks from Japanese lakes; that is, a Canadian benthic prefers a Japanese benthic over its close limnetic cousin from its own lake.
    Their conclusion: in each lake, what began as a single population faced such competition for limited resources that
    disruptive selection - competition favoring fishes at either extreme of body size and mouth size over those nearer the mean - coupled with
    assortative mating - each size preferred mates like it
    favored a divergence into two subpopulations exploiting different food in different parts of the lake.
    The fact that this pattern of speciation occurred the same way on three separate occasions suggests strongly that ecological factors in a sympatric population can cause speciation.
    Sympatric speciation driven by ecological factors may also account for the extraordinary diversity of crustaceans living in the depths of Siberia's Lake Baikal.

    Parapatric Speciation

    There is another possible way for new species to arise in the absence of geographical barriers.

    If a population ranges of a vast area (e.g., the Amazon basin in south America) and
    if the individuals in that population can disperse over only a small portion of this range,
    then gene flow across these great distances would be reduced.
    Genetic isolation arising simply from the great distance separating subpopulations could thus lead to "parapatric" speciation. Some workers feel that the enormous species diversity of the rain forests of South America (greater than that of Africa and Asia combined!) arose from parapatric speciation.
  2. Google AdSense Guest Advertisement

    to hide all adverts.
  3. spuriousmonkey Banned Banned

    so why should we be racist?
  4. Google AdSense Guest Advertisement

    to hide all adverts.
  5. one_raven God is a Chinese Whisper Valued Senior Member

    My guess is that The_King is white, male and 20 - 40 years old.

    I could be wrong, however.
  6. Google AdSense Guest Advertisement

    to hide all adverts.
  7. The_King Destroy the jews. Registered Senior Member

    Here is a fable.

    A long, long time ago, there was the Australopithecines, and a branch of them known as proto-Homo Erectus. However, they interbred, and humanity never came into being. Yet they were very moral, in not being racist.

  8. The_King Destroy the jews. Registered Senior Member

    Um, like the vast majority of posters on any board you may find.

    Please Register or Log in to view the hidden image!

    Let me guess? Black, between 20 and 40, and jealous as all hell of whites.

    Please Register or Log in to view the hidden image!

  9. one_raven God is a Chinese Whisper Valued Senior Member


    White, 31, male and....
    Pay attention, now.... Here's they key...
    OPEN minded.

    Obviously the different races CAN and often DO interbreed and actually DO successfully produce offspring.
    So exactly how does your clever little fable support racism at all?
  10. The_King Destroy the jews. Registered Senior Member

    Obviously the different races CAN and often DO interbreed and actually DO successfully produce offspring.

    I never said they couldn't.

    Please Register or Log in to view the hidden image!

    So exactly how does your clever little fable support racism at all?

    Basically, in your opposition to racial purity, you are in fact striving to kill off any chance of allopatric speciation, and thus, increased diversity. No doubt you are extremely moral.

    This is usually the superstition i am arguing with:
    Just giving you a roast, i have learned that it is impossible to change a superstitious mind.

    Please Register or Log in to view the hidden image!

  11. spuriousmonkey Banned Banned

    a huge diverse white population would still suffer from lack of isolation.
  12. The_King Destroy the jews. Registered Senior Member

    It would not have to be just the white population. The Japanese might be good material to work with.
  13. spuriousmonkey Banned Banned

    you are aware of the fact that there can be more diversity between to white people than between a white person and a black person???

    probably not.
  14. Dr Lou Natic Unnecessary Surgeon Registered Senior Member

    I didn't think you were actually racist untill that little comment

    Please Register or Log in to view the hidden image!

    I honestly do think travel has stopped new species evolving due to the fact different races are now mingling back together.
    I think it is clear the change between the races was the start of an evolutionary process that would have resulted in a different species for every race had they never met again. But that isn't what happened. Now that we are side by side with all the different races of the world it is pointless not to breed with them. It just means we will eventually go back to being one race again. If you think thats "bad" thats your problem it has no scientific or logical backing.
  15. spuriousmonkey Banned Banned

    in the end speciation happens because there is selection. It is not isolation that drives speciation, it may just facilitate it. If we really need to evolve we will anyway.
  16. edgar Registered Senior Member

  17. spookz Banned Banned

    i had no idea a race was a seperate species as well
  18. spuriousmonkey Banned Banned

    spookz...that's why read posts in sciforums. You hear everything first here!

    Sciforums is on the cutting edge of science and scientific terminology.
  19. ElectricFetus Sanity going, going, gone Valued Senior Member

    Don't even get me started again on how Political Correct anti-racist thinking has scientific (well at lest statical) backing.
  20. river-wind Valued Senior Member


    hmm, and interesting hypothosys, but havine performed the experiment, under controlled conditions, I have come to the following conclusions.

    1)humans and hampsters are two different species, and cannot produce viable offspring.
    2)hampsters bite (ow!)
    3)no matter what my girlfriend says, I *am* to big for a hampster!

    Please Register or Log in to view the hidden image!


    so what do you suggest when a virus comes along which attacks humans? If we have only one species, then there is a much lower change that we will survive the epademic. if we had multiple species of human, the humans as a whole would be more prepared to survive a disease or a change in environmental conditions. I think that is what the king is trying to get at.

    However, given our great ability to think things out, we have medicine and gortex to take care of problems once dealt with solely through speciation. Which is better? I don't know.
  21. edgar Registered Senior Member

    but if we change ourselves....we wouldnt be humans n e more......o yea and i knew that human and hamsters cant have offspring......or can they

    Please Register or Log in to view the hidden image!

  22. blankc Your superior Registered Senior Member

    Well the longest isolated group are the aborigines of Austalia and they are still quite the same species after 50k years. So how do you propose we keep racial populations of humans seperate for the hundreds of thousands of years required, and why bother even? The most likely chance for human seperation that I can see(and it's not desirable or likely) is if we found a permanent and self-sustaining martian colony, and the erath breaks out in savage war removing all our technology and civilization, and leaving the martian humans standed. And that far flung chance is the most likely I can see. Or you could found a selective breeding cult(or join someone elses?) and work towards your goals amoungst youselves while leaving the rest of humanity alone.


Share This Page