MetaKron said:
Your links don't work.
The same hucksters who have been wrong before bring in "new" material and dress it up fancy, to recycle the argument. They think they are credible therefore they are credible no matter how many times they are wrong. This is not a level playing field.
This may be true for those who study cannabis as a drug addiction; however cannabis is also studied for its pharmacological benefits and these studies support the findings from epidemiological data.
"A marijuana withdrawal syndrome is only recently gaining acceptance as being clinically significant. Similarly, laboratory animals exhibit both tolerance and dependence following chronic administration of cannabinoids. These animal models are being used to evaluate the high degree of plasticity that occurs at the molecular level in various brain regions following chronic cannabinoid exposure. In this review, we describe recent advances that have increased our understanding of the impact of chronic cannabinoid administration on cannabinoid receptors and their signal transduction pathways. Additionally, we discuss several potential pharmacotherapies that have been examined to treat marijuana dependence."
http://www.ncbi.nlm.nih.gov/entrez/...uids=16596793&query_hl=56&itool=pubmed_DocSum
"Recent developments have implicated cannabinoid CB1 receptors as a novel target for a new class of therapeutic agents used to treat drug addiction. CB1 receptors are expressed in the motivational circuitry of the brain and modulate drug seeking. Blockade of the CB1 receptor is particularly effective in reducing cue-induced reinstatement of drug seeking, an animal analogue of cue-induced relapse in human addicts. These relapse-preventing properties are observed with different classes of abused drug (i.e. psychostimulants, opiates, nicotine and alcohol). In addition, recent evidence indicates a more general role of CB1 receptors in reward-related memories, which is consistent with the proposed role of endocannabinoids in memory-related plasticity. Relapse-preventing actions and inhibitory effects on weight gain were confirmed recently in clinical trials with the CB1 antagonist rimonabant. Collectively, these clinical and preclinical studies suggest that antagonists of CB1 receptors offer a novel approach in the treatment of addictive behaviours."
http://www.ncbi.nlm.nih.gov/entrez/...uids=15992935&query_hl=56&itool=pubmed_DocSum
Marijuana use has been associated with disordered cognition across several domains influenced by the prefrontal cortex (PFC). Here, we review the contribution of preclinical research to understanding the effects of cannabinoids on cognitive ability, and the mechanisms by which cannabinoids may affect the neurochemical processes in the PFC that are associated with these impairments. In rodents, acute administration of cannabinoid agonists produces deficits in working memory, attentional function and reversal learning. These effects appear to be largely dependent on CB(1) cannabinoid receptor activation. Preclinical studies also indicate that the endogenous cannabinoid system may tonically regulate some mnemonic processes. Effects of cannabinoids on cognition may be mediated via interaction with neurochemical processes in the PFC and hippocampus. In the PFC, cannabinoids may alter dopaminergic, cholinergic and serotonergic transmission. These mechanisms may underlie cognitive impairments observed following marijuana intake in humans, and may also be relevant to other disorders of cognition. Preclinical research will further enhance our understanding of the interactions between the cannabinoid system and cognitive functioning.
http://www.ncbi.nlm.nih.gov/entrez/...uids=16574226&query_hl=56&itool=pubmed_DocSum
Cannabinoids represent one of the most widely used hallucinogenic drugs and induce profound alterations in sensory perception and emotional processing. Similarly, the dopamine (DA) neurotransmitter system is critical for the central processing of emotion and motivation. Functional disturbances in either of these neurotransmitter systems are well-established correlates of the psychopathological symptoms and behavioral manifestations observed in addiction and schizophrenia. Increasing evidence from the anatomical, pharmacological and behavioral neuroscience fields points to complex functional interactions between these receptor systems at the anatomical, pharmacological and neural systems levels. An important question relates to whether these systems act in an orchestrated manner to produce the emotional processing and sensory perception deficits underlying addiction and schizophrenia. This review describes evidence for functional neural interactions between cannabinoid and DA receptor systems and how disturbances in this neural circuitry may underlie the aberrant emotional learning and processing observed in disorders such as addiction and schizophrenia.
http://www.ncbi.nlm.nih.gov/entrez/...uids=16699809&query_hl=56&itool=pubmed_DocSum
Cannabinoids represent one of the most commonly used hallucinogenic drug classes. In addition, cannabis use is a primary risk factor for schizophrenia in susceptible individuals and can potently modulate the emotional salience of sensory stimuli. We report that systemic activation or blockade of cannabinoid CB1 receptors modulates emotional associative learning and memory formation in a subpopulation of neurons in the mammalian medial prefrontal cortex (mPFC) that receives functional input from the basolateral amygdala (BLA). Using in vivo single-unit recordings in rats, we found that a CB1 receptor agonist potentiated the response of medial prefrontal cortical neurons to olfactory cues paired previously with a footshock, whereas this associative responding was prevented by a CB1 receptor antagonist. In an olfactory fear-conditioning procedure, CB1 agonist microinfusions into the mPFC enabled behavioral responses to olfactory cues paired with normally subthreshold footshock, whereas the antagonist completely blocked emotional learning. These results are the first demonstration that cannabinoid signaling in the mPFC can modulate the magnitude of neuronal emotional learning plasticity and memory formation through functional inputs from the BLA.
http://www.ncbi.nlm.nih.gov/entrez/...uids=16775133&query_hl=56&itool=pubmed_DocSum