The "you cannot prove a negative" argument

Discussion in 'General Philosophy' started by stateofmind, Mar 6, 2010.

  1. Doreen Valued Senior Member

    So would I be correct in interpreting the above as saying that when you said

    you were referring only to closed systems?
  2. Google AdSense Guest Advertisement

    to hide all adverts.
  3. glaucon tending tangentially Registered Senior Member

    No; that would be the complete opposite of what I was saying.
    As I said, it is only within closed systems that one can prove. Outside of this, one is left to inductive probability.
  4. Google AdSense Guest Advertisement

    to hide all adverts.
  5. Doreen Valued Senior Member

    Of course. I was asking tongue in cheek. I just can't see how this...
    holds with...

  6. Google AdSense Guest Advertisement

    to hide all adverts.
  7. Doreen Valued Senior Member

    Of course. I was asking tongue in cheek. I just can't see how this...
    holds with...

  8. glaucon tending tangentially Registered Senior Member

    I have to say, I can't see the issue.
    It's completely clear.

    "Provable" obtains to the domain of closed systems.
    Else, only rational assertion obtains.

    That's it.
  9. Fraggle Rocker Staff Member

    I don't understand the issue either. In science, which is the domain we operate in here at SciForums, every hypothesis must be testable. That follows directly from the scientific method: you can't prove something false or prove it true beyond a reasonable doubt if you can't test it. An untestable claim, therefore, is not a reasonable assertion. If it's a hunch, then it has to be elaborated into testable form before it's really science.

    Glaucon does not use my legal language in his discussion of "non-proof amenable domains," and perhaps your confusion illustrates why I think the language of the law is better than the language of science. He's just saying in his own words that in science (as opposed to mathematics or police work) a theory can only be proven "true beyond a reasonable doubt," not "absolutely true."
  10. Nunayer Beezwax Registered Senior Member

    But of course, not completely clear, as "closed system" is a concept from physics meaning "isolated from the surrounding environment". Most familiar from thermodynamic entropy laws...

    I think you mean to say "formal systems" such as those of math and formal logic. Both are idealizations, the only truly closed system might be the universe, and the only truly formal system might be quantum physics.

    Don't mind me, just tidying up here....
  11. Fraggle Rocker Staff Member

    Yes. I usually put in parentheses (as defined by laymen, not physicists). Nonetheless defining the natural universe as a closed system is a cornerstone of physics. If the natural universe were not a closed system, then by definition:
    • A. There must be a "surrounding environment," or as it's usually called, a "supernatural universe" external to it, and
    • B. The natural universe is not isolated from the supernatural universe, or as it's usually presented, creatures and/or other forces within the supernatural universe have the ability to affect the operation of the natural universe.
    It is part B. that claims to falsify all of science. Part A. without Part B. cannot be disproved, but because if it never makes itself known to us it cannot even be tested, it is not a proper scientific hypothesis in the first place.
    No, that is absolutely not what I mean. I mean that science postulates that the natural universe is not acted upon by supernatural forces--forces external to the natural universe. If it were, then predicting the future behavior of the natural universe from theories based on empirical observation of its present and past behavior would be pointless.

    One could say, "But what if those supernatural forces are logical and predictable?" I would answer that in that case they don't seem very supernatural, especially within the framework of discourse that virtually all supernaturalists use. Their god does absolutely unpredictable shit all the time. Or at least he did before we had cameras. If they are logical and predictable, then we can study them and add them to the scientific canon.

    The whole purpose of religion is to explain things that we can't find a way to explain at our current level of ignorance, without going to all the expense and trouble of inventing science and finding the truth the hard way.

    Or, as my wife puts it, "Religions are always invented by men, so you guys never have to say, 'I don't know'."
  12. glaucon tending tangentially Registered Senior Member



    Quite correct.

    Thanks for the [re-]clarification Fraggle.
  13. Bishadi Banned Banned

    Great stuff.

    can i add?
  14. stateofmind seeker of lies Valued Senior Member

    Do you think it's possible that some phenomena can exist that are only testable and provable to the individual?
  15. Doreen Valued Senior Member

    I do hope both you and Fraggle will not read what I am writing her thinking you know where I am going. Please read it as simply trying to reconcile two assertions you made that to me do not fit together.


    I think it might be helpful if you gave an example that fits the first quote of yours below.

    1) I ask if this relates to closed systems....
    2) you respond No. So, therefore, I conclude it relates to not closed systems, as I assumed, actually. Not closed systems = not proof amenable domains. IOW relates to what we generally work with along probablistic lines.
    3) you said....
    Here saying that one can assert with great confidence there is no God.

    Why is this not 'outside the bounds of reasonable assertion, given the first statement above?

    EDIT: I have now read Fraggle's clarification, which you agreed with. This would mean that this
    relates only to assertions assertions of certainty. But then this is odd since it all non-closed system claims are not assertions of complete certainty so it seems almost tautological.
    Last edited: Mar 18, 2010
  16. Nunayer Beezwax Registered Senior Member


    Oh, bother.

    As you will notice if you check the timestamps on my last post, Fraggle posted while I was writing mine, I was replying to glaucon, not to Fraggle. Obviously I should have specifically quoted, but I was under the impression that my response would appear directly under glaucon's post. Fraggle just slipped in there!

    And now Fraggle made a big reply to my clarification which was not intended for him at all. What a mess!
  17. glaucon tending tangentially Registered Senior Member




    Simply due to the nature of the object in question.
    If the the object lies within a closed system, then it is amenable to proof. If not, then merely an inductive rational assertion.

    Clearly, 'god' is a member of the second class, ergo....

    Which is why we can say with confidence, that an assertion of 'god' is ridiculous.
  18. Doreen Valued Senior Member

    Hm. Is 'there is no God' a testable assertion?

    (And Glaucon, I do understand the distinctions between open and closed systems and the difference between drawing probablistic conclusions based on inductive reasoning and drawing conclusions based on deduction, for example. It just seems to me, however, that
    passes judgment on both the positive and negative assertions. So to me either this statement needs to be qualified or even the negative goes out of bounds.) IOW: I understand exactly what you mean when you describe how you have decided thinking there is no God is rational and how this relates to probabilities in an open system. I just don't see how it fits with the above statement.

    EDIT: I'm actually finding this kind of weird, so I am going to drop it.
    Last edited: Mar 19, 2010
  19. parmalee peripatetic artisan Valued Senior Member


    i have to ask, are you being deliberately obtuse, or have you allofasuddenlike embraced heidegger's notions of "thinking"? if the latter, fine; obviously, i'm all for that--except i clearly have issues with the "apposable" thumb bit.

    but as re: the former. there is no confusion regarding "closed systems," nor matters of provability, probability, certainty, or any such thing. and fraggle was indeed "misdirecting the discourse" by decontextualizing, spewing some of the usual trite ad homs (yawn), and going on about something about which noone, so far's i could tell, seemed to be suffering any "confusion." (yawn yawn)
    it's a quite simple matter really:

    you said:
    but then you said:
    and then:
    so, "rational assertion," but NOT "reasonable assertion"--huh? and "testable"?
  20. glaucon tending tangentially Registered Senior Member


    Semantically, yes.
    But I'm sure that's not what you meant.
    In short, no [as previously mentioned].


    now I see where the confusion between us lies.

    You're implicitly applying a bivalent relationship where there is none.
    A positive assertion, contingent on type [closed or open system] is an entirely different creature from the correlate negative 'assertion'.

    So, while the assertion of 'god' cannot be "within the bounds of reasonable assertion", this does not entail that the denial of said assertion is similarly restricted. Thus [in a rewording of what I've said] 'god exists' is both untestable and outside the bounds of reasonable assertion, while 'god does not exist' is untestable, but not outside of the bounds of reasonable assertion.
  21. glaucon tending tangentially Registered Senior Member

    Not at all.
    The fact is that the term "proof" is properly understood by very few people. Talk to a mathematician and ask them about it.

    You've made the same mistake Doreen has.

    See above.
  22. parmalee peripatetic artisan Valued Senior Member

    the second part, sure; but as to the "not at all," what specifically were you referring to? to be clear, i am alluding to post #73. are you suggesting that fraggle did not take the quote out of context to make an unrelated point, and thus "misdirect the discourse"--a claim, which either in his failure to read or his failure to understand, he falsely attributed to Doreen? or that he did not spew his usual trite ad homs? (heh. in this place of "science and scholarship." i could make a little joke here about "testable claims," but instead i'll just give you a hint: this oft-cited fellow makes lacan look positively scientific (or mathematical, as the case may be).

    Please Register or Log in to view the hidden image!

    hope that was enough of a "hint.")

    given the above qualification, this seems to make sense; though in the absence of the qualification, it would seem odd to simply assume that the "denial of an assertion" does not constitute a claim.
  23. glaucon tending tangentially Registered Senior Member

    I was merely attempting to indicate that to dismiss Fraggle's comments out of hand was not appropriate. I was paying more attention to the 'spirit' of what he said, as opposed to any particular interpretation. To wit: that people often make use of terms incorrectly.

    Glad to see I've made myself understood [somewhat..].

    I hate to say this but, yes and no.
    It does indeed constitute a claim, but the claim is entirely contingent upon a preceding claim [that of the (positive) assertion].

    Or, put in other words, one can posit an object, but one cannot posit the denial of an object [without the precedent assertive posit].

    ... Clearly, I've been reading too much Frege as of late...

    Please Register or Log in to view the hidden image!

    Speaking more generally on the topic at hand, and in particular on this distinction between classes of proof-amenable systems, it should be noted that there is the notion of supervenience to consider.

    This is to say, the domain of formal logic [and other closed systems...] will always also be rational [ the notions of "inductive rational assertions", "reasonable", and other of this ilk that have been used here.]. However, the converse is not the case: the domain of rational, does not necessarily have to be logical.
    Thus, the distinctions I've mentioned throughout this thread.

    Last edited: Mar 20, 2010

Share This Page