An end in sight in the long search for gravity waves:
5 hours ago by David Blair
Our unfolding understanding of the universe is marked by epic searches and we are now on the brink of discovering something that has escaped detection for many years.
The search for gravity waves has been a century long epic. They are a prediction of Einstein's General Theory of Relativity but for years physicists argued about their theoretical existence.
By 1957 physicists had proved that they must carry energy and cause vibrations. But it was also apparent that waves carrying a million times more energy than sunlight would make vibrations smaller than an atomic nucleus.
http://phys.org/news/2014-02-sight-gravity.html
For the first time we have firm predictions: both the strength and the number of signals. No longer are we hoping for rare and unknown events.
We will be monitoring a significant volume of the universe and for the first time we can be confident that we will "listen" to the coalescence of binary neutron star systems and the formation of black holes.
Once these detectors reach full sensitivity we should hear signals almost once a week. Exactly when we will reach this point, no one knows. We have to learn how to operate the vast and complex machines.
If you want to place bets on the date of first detection of some gravity wave then some physicists would bet on 2016, probably the majority would bet 2017. A few pessimists would say that we will discover unexpected problems that might take a few years to solve.
Read more at: http://phys.org/news/2014-02-sight-gravity.html#jCp
5 hours ago by David Blair
Our unfolding understanding of the universe is marked by epic searches and we are now on the brink of discovering something that has escaped detection for many years.
The search for gravity waves has been a century long epic. They are a prediction of Einstein's General Theory of Relativity but for years physicists argued about their theoretical existence.
By 1957 physicists had proved that they must carry energy and cause vibrations. But it was also apparent that waves carrying a million times more energy than sunlight would make vibrations smaller than an atomic nucleus.
http://phys.org/news/2014-02-sight-gravity.html
For the first time we have firm predictions: both the strength and the number of signals. No longer are we hoping for rare and unknown events.
We will be monitoring a significant volume of the universe and for the first time we can be confident that we will "listen" to the coalescence of binary neutron star systems and the formation of black holes.
Once these detectors reach full sensitivity we should hear signals almost once a week. Exactly when we will reach this point, no one knows. We have to learn how to operate the vast and complex machines.
If you want to place bets on the date of first detection of some gravity wave then some physicists would bet on 2016, probably the majority would bet 2017. A few pessimists would say that we will discover unexpected problems that might take a few years to solve.
Read more at: http://phys.org/news/2014-02-sight-gravity.html#jCp