Self -healing materual from 1950

Discussion in 'Chemistry' started by arauca, Feb 5, 2012.

  1. arauca Banned Banned

    Messages:
    4,564
    The researchers, grad student Peiwen Zheng and Professor Thomas J. McCarthy from the University of Massachusetts, have published a paper on the rediscovery of siloxane equilibration in a recent issue of the Journal of the American Chemical Society.

    “We have been working on silicone materials from a couple of different perspectives,” Zheng told PhysOrg.com. “When we rediscovered the forgotten unusual properties of silicones and combined them with today’s research interests, we found that the silicone material with the siloxane equilibration was an obvious candidate for a self-healing material.”

    The researchers performed several experiments to test the theoretical predictions from papers published in the early 1950s, as well as to extend some of the experiments performed at that time. In one experiment, Zheng and McCarthy prepared a siloxane-based mixture containing a cross-linking agent and a catalyst. Then they poured the solution into molds of various shapes, such as cylinders, disks, and dog bones. After heating the molds at 90 °C (194 °F) for four hours, the researchers removed clear, rubbery silicone shapes from the molds. The scientists described these silicone samples as “living polymer networks.”


    “The silicone network is at a chemically anionic equilibrium,” Zheng explained of the term, “where the reactive center will cleave and reform a covalent siloxane bond.” These bonds are reversible, which enables the two sides of a crack to reconnect under the right conditions.

    To demonstrate the self-healing ability, the researchers cut a 1-cm-long cylindrical sample in half using a razor blade. Then they rejoined the two pieces by wrapping them together with Teflon plumbing tape and heating them in an oven at 90 °C (194 °F) for 24 hours. When the researchers retrieved the sample and removed the tape, they found that the silicone cylinder had completely healed. Then they bent the cylinder by hand until it broke again - significantly, it broke in a different location than where it had been cut. The scientists repeated this experiment on different shaped objects with the same results.
     
  2. Google AdSense Guest Advertisement



    to hide all adverts.
  3. arauca Banned Banned

    Messages:
    4,564
    Here is an additional information
    Abstract
    Although the last decade has brought self-healing materials on the forefront of scientific interests, combining repair and sensing attributes into one material entity have not been addressed. These studies report the development of poly(methyl methacrylate/n-butylacrylate/2-[(1,3,3-trimethyl-1,3-dihydrospiro[indole-2,3'-naphtho[2,1-b][1,4]oxazin]-5-yl)amino]ethyl-2-methylacrylate) [p(MMA/nBA/SNO)] copolymer films that upon mechanical scratch undergo color changes from clear to red in the damaged area, but upon exposure to sunlight, temperature and/or acidic vapors, the damaged area is self-repaired and the initial colorless appearance is recovered. The process is reversible and driven by the ring-opening-closure of spironapthoxazine (SNO) segments to form merocyanine (MC), which are recovered back to the SNO form. Upon mechanical damage, SNO segments of the neighboring copolymer segments form inter-molecular H-bonding that stabilizes copolymer backbone, that remains in an extended conformation. External stimuli, such as light, temperature, or acidic environments cause a dissociation of the H-bonded MC pairs, which are converted back to SNO. This process is associated with the p(MMA/nBA/SNO) backbone collapse, thus pulling entangled neighboring copolymers to fill removed mass and repair a scratch. Mechanical nano-indentation analysis combined with molecular modeling and spectroscopic measurements confirm this behavior. The enclosed video clip illustrates molecular repair processes induced by visible light monitored by in-situ Raman imaging spectroscopy. These materials may find numerous future applications, where coupling of simultaneous color changes and reversible self-repair responses may lead to new technological paradigms.
    http://www.physorg.com/news/2012-03-plastics-mdash-human-skin.html
     
  4. Google AdSense Guest Advertisement



    to hide all adverts.

Share This Page