Hi, I present below an alternative version (not a questioning) to the theory of general relativity in order to integrate the accelerating expansion of the universe, the dark matter and to solve the problem of quantum time. To do this, quantifying space-time is essential. It’s not an easy concept to explain. To do so, I will describe my approach below and have written an article for those who will be interested. There is a strong similarity (which is not obvious) between the energy of an elementary particle and the energy of a fluid in motion (describes the Bernoulli’s principle): For a moving particle, the energy comes from two sources: having speed and having mass. Energy of a moving particle: Energy = motion + mass Bernoulli's principale (venturi effect) : Ptotal = Pdynamic + Pstatic This theory has two postulates: 1. Space-time is created by the particles composing it (electrons, higgs boson, possible particles still unknown, etc.). The particles are made of material giving them a volumetric density of material. Therefore, space-time is a kind of ocean of elementary particle. 2. Movement takes place from high densities of material to low densities of material (entropy principle). Therefore, the particles exert a pressure between themselves by "diluting". The pressure forces are equivalent to the energy (the energy increases when the pressure increases, and the pressure increases when the volumetric density of the material increases, Pressure = 1 / volume). When the dynamic pressure of the particles of a fluid increases, the static pressure of the fluid decreases. This causes a pressure drop. When the energy of the elementary particles increases, space-time bends. When an elementary particle accelerates, its mass (its volumetric density of matter) increases and consequently it blocks less the other particles because it takes less “space” (indeed, the quantity of matter for a particle is invariant) . This release of space will generate a pressure drop. This fall is at the origin of the gravity! (low pressure are only attractive) From the same principle, when the energy of the medium increases, the particles contract and block each other less. They free spaces and are less restrained. As a result, the movement is fluidized as the temperature increases. The effects are comparable to those of the Higgs field! The speed of a particle depends on its energy and the energy of the particles around it. Thus, we can express the velocity of the particles by a ratio integrating all the results of the pressures forces (0 being a particle at rest and 1 the speed of light). The inert mass and the gravitational mass are completely equivalent in this theory. The inert mass being generated by a high pressure and the low mass by a pressure drop. The expansion of the universe is due to the fact that the particles are attracted to a "hyper-universe" less dense than our universe. Particles contract themselves (because their energy increases as they move) and “block” themsleves less and less as the expansion continues. Therefore, the expansion of the universe accelerates. Black holes can be formed via an intense energy difference. For more information: https://docs.google.com/document/d/1VlfLrGBI_g_xi3Ta8nnv3z4dQ_f-N3g5iLXDyvMHsco/pub I have absolutely no pretention, although the subject is very ambitious. Get feedback to build an interesting discussion of physics is my goal.

Is your idea the same as push gravity? Can you relate the activity you perceive to the field equations of GR? Alex

Hi Alex, My idea isn't push gravity, it's very different. I express an idea and not a successful theory because I have not mathematical level for that. I express the contraction of the particles relative to Lorentz factor in my article. I propose an idea that seems relevant conceptually. It physicists are interested in developing the idea, I would be very interested. I'm sorry for the quality of my English Thomas

You might be interested to know: https://en.wikipedia.org/wiki/Banach–Tarski_paradox In other words, it is possible to demonstrate mathematically that: volume of a sphere of radius r = twice the volume of the same sphere This obviously contradicts basic geometrical intuition, among other things, and so you should be very careful about making generalizations involving geometric volumes. This paradox was pointed out to me by my PhD math youngest son, who incidentally was briefly an associate of Andre Weil of Fermat's last theorem fame. If he had found a flaw in the logic, he would have told me. Since he didn't, you can be certain that it could take years, perhaps centuries for anyone else to puzzle out any flaws in this logic as well.

The paradox can be solved by the difference in the porosity of the two reassembled spheres relative to the original. From the Wiki, "The intuition that such operations preserve volumes is not mathematically absurd and it is even included in the formal definition of volumes. However, this is not applicable here, because in this case it is impossible to define the volumes of the considered subsets, as they are chosen with such a large porosity. Reassembling them reproduces a volume, which happens to be different from the volume at the start." The paradox that two spheres of equal volume to the original can result from the reassembly of the various pieces is true, but the increase in volume occurs as a factor of the increase in porosity.

If all three dimensions related to volume are light travel time (and in the physical universe they are), then any arbitrary volume will be not only porous, but Lorentz contractable in an infinitude of paired directions as well. Volume is not defined. Even a point that is an origin for a coordinate system has its limits, because it cannot be endowed with infinite inertia, even and especially if it contains all mass/energy in the universe. So can porosity also explain the same volumetric paradox for a cube? Almost certainly. All geometry is subject to relativistic effects due to proximity to other bound, unbound energy and relative motion. Even for mathematical ideas hatched entirely from symbolic constructs, the choices are still incomplete or inconsistent. The sphere volume paradox is an example of the latter, resulting from a volume construct derived of points having zero density and no constraints on relative proximity that derives of that property.

It is true, and there is clearly a parallel that can be drawn with our Big Bang arena. It starts with a tiny volume, and as it expands it could be said that its "porosity" increases. That is too simple in regard to a meaningful explanation for changing volume of the observable universe, but if we were to equate energy density to porosity, then it works for me.