Nanoclusters seem to skirt physics law

Discussion in 'Astronomy, Exobiology, & Cosmology' started by JukriS, Apr 18, 2009.

  1. JukriS Registered Senior Member


    "In simulations, tiny loophole allows colliding nanoclusters to increase speed after impact
    By Laura Sanders
    Web edition : Friday, April 17th, 2009
    font_down font_up Text Size
    FAST GETAWAYIn simulations, nanoclusters made up of several hundred atoms occasionally rebounded with more energy than each started with.Hiroto Kuninaka and Hisao Hayakawa

    Nobody’s above the law. But tiny clusters of colliding atoms may duck below the second law of thermodynamics. In simulations, researchers in Japan found that in rare cases, tiny clusters of atoms ricochet off each other faster than their approaching speeds. The results, which appeared in the March Physical Review E, seem to violate the second law’s requirement that any work squanders a little bit of energy in the form of waste heat, leaving the system a little more disheveled, with higher entropy.

    In collisions big enough to see, like those between a tennis ball and a gym floor, the speed of an object’s approach is always faster than its speed after impact. A tennis ball dropped against the floor bounces a little slower and comes up shorter on each bounce because a small amount of the ball’s energy is siphoned off in the form of waste heat.

    In the nanoworld, though, the new results suggest that normal rules do not always apply.

    Researchers Hisao Hayakawa, of Kyoto University, and Hiroto Kuninaka, of Chuo University in Tokyo, developed a computer program to model head-on collisions of squishy clusters of several hundred atoms called nanoclusters. At speeds between 3 and 5 meters per second (less than 12 miles per hour), most of the clusters in the simulation stuck together like two candied apples in the sun. Others just bumped into each other and moved away at a slower rate than their approach, like two colliding bocce balls on a lawn.

    But about 5 percent of the time, the colliding nanoclusters actually sped up after bumping, exhibiting what the researchers call a super rebound. During these rebounds, the outgoing energy exceeds the incoming energy, meaning that in these collisions, the system overall lost entropy, hence the apparent second law violation.

    “It’s an interesting observation. For me, it was also counterintuitive,” comments Jörn Dunkel, a theoretical physicist at the University of Oxford in England.

    This super bounce comes from the random internal fluctuations of motions in the atoms that make up each nanocluster, the study researchers say. Depending on the exact motions, some fluctuations can give the collision an extra boost, like an extra springy trampoline.

    But this extra boost only works in tiny systems, not trampolines, which are made up of zillions of atoms. “Nanoscale physics involves such unexpected events,” says Hayakawa.

    When the researchers increased the size of each nanocluster in the simulation to over 1,000 atoms, the super bounce disappeared entirely. “In order to see a violation of the second law, you need a very small number,” says Dunkel.

    These clusters get around the second law of thermodynamics on a statistical technicality: The average speed of all the outgoing nanoclusters is less than the approaching speed. Even though individual nanoclusters appear to violate the second law occasionally, the average behavior of all the nanoclusters falls squarely in line with the law’s constraints.

    The second law statistically describes large collections of atoms, like those in a tennis ball. Tiny groups of atoms, which are susceptible to large energy fluctuations, live outside of the second law. Just as a person can’t break a law that isn’t on the books, individual nanoclusters can’t really violate the second law in a meaningful way.

    Furthermore, Dunkel points out, the simulation is conducted in a perfect world. The real world, however, is messy, with things like oddly-shaped objects, variable temperature, and worst of all, gravity. These confounding imperfections make a real experiment tough.

    “It’s difficult to experimentally realize the conditions,” says Dunkel. “I wouldn’t say it’s unrealizable, just demanding.” To precisely control the temperature, shape and initial speed of the nanoclusters will be a challenge.

    But Hayakawa thinks that experimentalists will see this effect soon. “I believe that it will not take a long time to report the super rebound of nanoclusters in experiments,” he says.

    And once researchers have observed the super rebound, Hayakawa and Kuninaka plan to test whether it is possible to extract the surplus energy from these rebounds. To do so, a macroscopic machine will be needed to convert the surplus energy from the microscale super rebounds. But such a task will be difficult, since this conversion will eat up all the energy gained in the first place, says Hayakawa."

    Photon is not reflected in self-atom on.

    Photon does not start up in no time at the speed of light. Its energy is the accelerated pace away from the expansion of the atomic core/nuclei.

    Photon will go towards the expansion of the atomic cores, and will then in the future of energy-wave pressure variation when a new photon. In fact, the core of atom towards reaching photon to return to "the end", that is absorbed by atoms in the core for future energy-waves, etc.

    This phenomenon, therefore, can be explained so that the material away from the future and more quickly than the substance of the moving atoms, have the NOT same atoms as the material moved the atoms were.

    The substance is moving towards the atoms of a substance in the outer surface of the atoms with interlocked and cause hard-pressed surface of the substance of the atoms and deeper in between the atoms, when the energy becomes less strong high-density power and energy of this substance in the surface of the atoms ejected faster pace away from the material as the material gone atoms moved towards the material.

    The simple matter was multiplied complicated.
  2. JukriS Registered Senior Member


    The mountains*
    Neal Adams has developed "Theory of Expanding Planets"-model about how the planets expand three-dimentionally. According to Neal once the wasnt just one continent rounded by a sea, but the old continents were the only surface of the globe.´The three-dimentional expanding has torn apart the continents from each other. Neal doesn´t talk about accelerated expanding, so his theory needs gravitation.

    According to my theory there is no observable expanding if there is not enough variation of the pressure.

    Once for example a supernova explosion that happened nearby the globe brought an energywave dence enough towards the globe. The energic energybudles of this wave pushed themselves through the atomcores of the
    globe deep inside the globe (for example up to ten kilometres). These energybudles cleaned with them energywaves coming from the atomcores. The expanding atoms of the globe that located outside this area, pushed the atomcores of that area closer to each other. At the same time the expanding atomcores of that area expanded close to each other like in cold fusion. This is how heavier substaces originate and in this case I mean the shelf.

    If the separate energybudles of a energypulse that came towards the globe were quarks or protons/neutrons, they would have brought more substance deep underneath the globes surface. This developes a pressure that is bigger than normally to that area and this pressure accelerates the substace of that area to push itself away from the focal point of the globe. This is how the mountains developed. This excess pressure makes also the globe to expand in that area so much that it is noticeable afterwards.

  3. common_sense_seeker Bicho Voador & Bicho Sugador Valued Senior Member

    Very interesting research. Well found. For me it isn't that surprising. It simple shows the need for a quantum theory of gravity.
  4. Nasor Valued Senior Member

    No offense, but there is nothing that astounding here. According to the article, the "extra" energy is the vibrational energy that's stored in the atom-to-atom bond of the nanoparticles. New energy isn't being created from nothing, and the stuff about seeming to violate the second law of thermodynamics was just the reporter not knowing what the hell he was talking about. It's very analogous to throwing two compressed springs at each other, and having them bounce apart faster than they initially moved toward each other because they "uncompress" and release their stored mechanical energy as they are hitting each other.

Share This Page