Marco Drago: Know the name?

Discussion in 'Astronomy, Exobiology, & Cosmology' started by paddoboy, Oct 2, 2016.

  1. paddoboy Valued Senior Member

    Messages:
    27,543
    Gravitational waves were first observed by Marco Drago at LIGO on 11:50:45 am CET on 14 September 2015.

    Following the pre-established protocols, Marco tried to verify whether the signals were real or the “event” was just a dummy injected signal. Since aLIGO was still in engineering mode, there was no way to inject fake signals, i.e., hardware injections. Therefore, everyone was nearly 100% certain that this was a detection. However, it was necessary to go through the protocols of making sure that this was the case. Marco asked Andrew Lundgren, another postdoc at Hanover, to find out if the latter was the case. Andrew found no evidence of a “dummy injection.” On the other hand, the two signals detected were so clear, they did not need to be filtered to remove background noise. They were obvious. Marco and Andrew immediately phoned the control rooms at Livingston and Hanford.
    [from the following paper]
    http://www.mdpi.com/2218-1997/2/3/22/pdf



    A Brief History of Gravitational Waves
    Jorge L. Cervantes-Cota 1 , Salvador Galindo-Uribarri 1 and George F. Smoot 2

    Abstract:
    This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery.


    Conclusions:
    This observation confirms the last remaining unproven prediction of General Relativity (GR)—gravitational waves—and validates its predictions of space–time distortion in the context of large-scale cosmic events (known as strong field tests). It also inaugurates the new era of gravitational-wave astronomy, which promises many more observations of interesting and energetic objects as well as more precise tests of General Relativity and astrophysics. While it is true that we can never rule out deviations from GR at the 100% level, all three detections so far agree with GR to an extremely high level (>96%). This will put constraints on some non-GR theories and their predictions. With such a spectacular early result, others seem sure to follow. In the four-month run, 47 days’ worth of coincident data was useful for scientific analysis, i.e., this is data taken when both LIGOs were in scientific observation mode. The official statement is that these 47 days’ worth of data have been fully analyzed and no further signals lie within them. We can expect many more events once the detectors are running again. For gravitational astronomy, this is just the beginning. Soon, aLIGO will not be alone. By the end of the year VIRGO, a gravitational-wave observatory in Italy, should be operating to join observations and advanced modes. Another detector is under construction in Japan and talks are underway to create a fourth in India. Most ambitiously, a fifth, orbiting, observatory, the Evolved Laser Interferometer Space Antenna, or e-LISA, is on the cards. The first pieces of apparatus designed to test the idea of e-LISA are already in space and the first LISA pathfinder results are very encouraging. Together, by jointly forming a telescope that will permit astronomers to pinpoint whence the waves come, these devices will open a new vista onto the universe. (On the science side, the data is analyzed jointly by members of both LIGO and VIRGO, even though these data only come from LIGO. This is due to the analysis teams now being fully integrated. As this is not widely known, people do not realize that there is a large contribution from VIRGO scientists to the observations and to the future.) As technology improves, waves of lower frequency—corresponding to events involving larger masses—will become detectable. Eventually, astronomers should be able to peer at the first 380,000 years after the Big Bang, an epoch of history that remains inaccessible to every other kind of telescope yet designed. The real prize, though, lies in proving Einstein wrong. For all its prescience, the theory of relativity is known to be incomplete because it is inconsistent with the other great 20th-century theory of physics, quantum mechanics. Many physicists suspect that it is in places where conditions are most extreme—the very places that launch gravitational waves—that the first chinks in relativity’s armor will be found, and with them we will get a glimpse of a more all-embracing theory. Gravitational waves, of which Einstein remained so uncertain, have provided direct evidence for black holes, about which he was long uncomfortable, and may yet yield a peek at the Big Bang, an event he knew his theory was inadequate to describe. They may now lead to his theory’s unseating. If so, its epitaph will be that in predicting gravitational waves, it predicted the means of its own demise.
    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    The above paper, or really the complete story of gravitational waves from Einstein and GR, right up to aLIGO and Virgo, is a very interesting account of the final confirmation of not only gravitational waves, but the direct evidence of BH's. Plus of course the further prospects as I have highlighted in red.
    It also discusses the "sticky beads"concept.
    Enjoy!


     
    Last edited: Oct 2, 2016

Share This Page