About Venus Precession

Discussion in 'Astronomy, Exobiology, & Cosmology' started by TonyYuan, Mar 30, 2021.

  1. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    I have noticed that the Venus precession data 8.6" obtained by GR calculation is very inconsistent with actual observations. Is there any accurate data now? I also calculated the precession data of the eight major planets in the solar system.

    Mercury 43”
    Venus 240”
    Earth 3”
    Mars 1”
    Jupiter 0.8”
    Saturn 0.1
    Except for Venus which is 240", other data are consistent with GR. I want to know which of 8.6" vs 240" is correct.

    I hope the answer can be found here.
    Thanks.
     
    Dennis Tate likes this.
  2. Google AdSense Guest Advertisement



    to hide all adverts.
  3. Dennis Tate Registered Senior Member

    Messages:
    812

    I do believe that there is somebody here at this forum who can answer this question!
     
  4. Google AdSense Guest Advertisement



    to hide all adverts.
  5. James R Just this guy, you know? Staff Member

    Messages:
    35,782
    Tony:

    Are you interested in the total precession of the orbital perhelion, or just in the "anomalous" precession due to GR?

    Also, are the units you're using arcseconds per century?

    P.S. It looks like you're asking about anomalous precession. The correct figure for Venus is 8.6 arcseconds per century.

    Clearly, the figure must be greatest for Mercury, then decrease as you go outwards through the planets of the solar system, because Mercury is further down in the Sun's "gravitational well" than any of the other planets.
     
    Last edited: Apr 8, 2021
    exchemist likes this.
  6. Google AdSense Guest Advertisement



    to hide all adverts.
  7. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    I'm all interested.
    Yes.
    Your data comes from GR calculations, not from observations.
    I don’t think so. Gravitational waves are the root cause of planetary precession. Eccentricity and the angle between the planet's orbit and the ecliptic plane are the main factors.
    If Mercury's angle is equal to 0, then you will not be able to observe Mercury's 43" precession.

    https://www.researchsquare.com/article/rs-384421/v1

    http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node115.html
    Richard will tell you that except for Mercury's 43", the planetary precession data calculated by GR is of no value!
     
    Last edited: Apr 8, 2021
  8. James R Just this guy, you know? Staff Member

    Messages:
    35,782
    How do you know where my data comes from?
    No. They have nothing to do with it.
    Why? Please explain.
    Says who?

    You're citing yourself?
    Where will he tell me that?
     
  9. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    I checked the information on the wiki, only one article talked about the Venus precession data, but it lacked reliability. If you can provide strong observation data, then I will be very happy to see it.
    Gravitational waves have been measured many, many times, enough to explain the problem.
    I think you can read his article carefully, and I also communicated with him on this issue.

    I believe that the observation results, GR is not magic, it is just a mathematical model, its essence is the gravitational wave density model.
     
  10. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    https://www.researchsquare.com/article/rs-384421/v1
    What is said here is very clear. My theory is not complicated, it is a physical model of the influence of gravitational waves on gravity


    Planet

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Mercury

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Venus

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Earth

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Mars

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Jupiter

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Saturn

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Uranus

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!


    Neptune

    Please Register or Log in to view the hidden image!

    Please Register or Log in to view the hidden image!



    The difference between the observation result and the calculation result of Newtonian mechanics is very different from the result of GR calculation except for Mercury.


    Mercury has made GR very difficult.
    If the above calculation is carried out sightly more accurately, taking the eccentricity of Mercury's orbit into account, then the general relativistic contribution to

    Please Register or Log in to view the hidden image!

    becomes 0.43 arc seconds per year. It follows that the total perihelion precession rate for Mercury is 5.32+0.43=5.75 arc seconds per year. This is in exact agreement with the observed precession rate. Indeed, the ability of general relativity to explain the discrepancy between the observed perihelion precession rate of Mercury, and that calculated from Newtonian dynamics, was one of the first major successes of this theory.


     
    Last edited: Apr 8, 2021
  11. James R Just this guy, you know? Staff Member

    Messages:
    35,782
    I can't, but I'm confident that if you search through the peer-reviewed literature you should be able to find relevant papers.
    Gravitational waves are predicted by general relativity. You seem to want a non-GR explanation for precession. Where are you going to get your gravitational waves from, if not from GR?
    I'm not going to read through an entire online textbook on the off-chance that what you said was correct. Either point me to the appropriate place, or don't.
    No. That is not the essence of GR.
     
  12. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    GR predicted gravitational waves, LIGO and others observed gravitational waves and measured their speed. I am based on facts! The revolution of the sun will cause gravitational waves. You can look at the definition of gravitational waves!
     
  13. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
  14. James R Just this guy, you know? Staff Member

    Messages:
    35,782
    Tony:

    So you're trying to use GR's gravitational waves to predict the precession of the perihelions of the planets? Is that correct?

    I thought your position was that GR's description of gravity is incorrect.
     
  15. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    I used this physical model to derive the gravitational equation and applied it to the orbit calculation to obtain planetary precession data:
    Mercury 43”
    Venus 240”
    Earth 3”
    Mars 1”
    Jupiter 0.8”
    Saturn 0.1
    I like to speak with facts instead of simply negating or affirming.
     
  16. James R Just this guy, you know? Staff Member

    Messages:
    35,782
  17. James R Just this guy, you know? Staff Member

    Messages:
    35,782
    Your figure for Venus cannot be correct, unless GR is wrong.

    You need to compare GR's prediction of 8.6" and yours of 240" with observational data. That will decide the issue one way or the other.

    Why have you not done that?
     
  18. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    Yes, you can say that, but gravitational waves are not invented by GR, they are real!
    Can you give a specific explanation? Simply negate or affirm, everyone can do it.
     
  19. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    Yes, but it is only an explanation of Mercury. Have you noticed the observation data and calculation data of other planets?
     
  20. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    I have already explained why 240" is more credible than 8.6"!

    So why is the data of Venus (240" vs 8.6") so different? From formula (40) we can see that GR does not consider the angle between the orbital surface and the vertical surface of the sun. Under different eccentricity and angles, the precession data calculated by GR is still the same. These may be the reason for the large difference between the two.

    First, let’s look at the characteristics of Venus: Venus’s eccentricity is abnormally low (e = 0.0068), which makes its perihelion extremely sensitive to small disturbances . But the angle between its orbit and the vertical plane of the sun is very large 3.39°, so we have reason to believe that gravitational waves will have a great influence on the orbital precession of Venus.

    https://www.researchsquare.com/article/rs-384421/v1
     
  21. James R Just this guy, you know? Staff Member

    Messages:
    35,782
    Tony:

    You said:
    The guy you cite says:
    Notice that the webpage you cite disagrees with you. It does not say that "eccentricity and the angle..." are the "main factors". It says that including those factors only makes the General Relativistic calculation "slightly more accurate". Specifically, it takes the annual precession rate for Mercury from 0.41" to 0.43".
     
  22. James R Just this guy, you know? Staff Member

    Messages:
    35,782
    Tony:
    I have never denied they are real. In fact, they have been experimentally detected!
    A specific explanation of what?

    I asked you to tell me whether you believe that GR is correct or incorrect. You seem to want to have a bet each way. You want to rely on GR's description of gravitational waves, and at the same time deny that GR is a correct theory. Can't you see the problem with that?
    In a brief search, I read that some observations were made for other planets back in the 1970s or 1980s. I didn't chase up the relevant papers. I assume that you would do that, seeing as you're trying to disprove the GR predictions.
    I don't think your theory is more credible than the general theory of relativity. Neither does the professor you corresponded with over some period of time.
    Probably because you are wrong and GR is right.
    Yes, but as the author notes, that can be taken into account. If it is, it only makes a small difference.
    No. The page you quote explicitly says the opposite to what you're claiming here. Don't you understand it?
    It makes the perihelion hard to determine precisely, from an observational point of view, because the orbit is almost circular.
    Very large compared to what?
    What's the reason?
     
  23. TonyYuan Gravitational Fields and Gravitational Waves Registered Senior Member

    Messages:
    524
    This is my opinion, not Richard's.

    and

    I also agree with this point of Richard :Adding eccentricity will make GR more accurate. I checked the information of GR, got the calculation formula of GR, and applied it to my program for verification:
    24*Pi*Pi*Pi*a/c*a/c/ (pow(T*24*60*60,2)*(1-pow(e,2)))*(365.25*100/info.T )*(180/Pi)

    Ok, gravitational waves are my theoretical basis.

    This is a very good question. Let me emphasize again that GR only predicted it. Gravitational waves are real, and it doesn't matter whether there is GR.
    Gravitational waves are my theoretical basis. I do not deny GR. GR is just a mathematical model, but I think it is not accurate. An example is, why does GR need not consider the angle between the planet's orbital plane and the ecliptic plane? If the orbit of Venus is perpendicular to the plane of the ecliptic, what is the precession of Venus? Is it still 8.6"?
    I have searched hard, through Google, through Wiki, but I haven't found any valuable information. There are many professors of astrophysics here, which is one of my purposes here. I hope they can provide me with some clues.
    If there is no observational evidence, please don't say that 8.6" is the correct data! In my opinion, it is only the result of GR calculation.
    Yes, Richard didn't admit it, but he couldn't point out the problem either. I also wrote to him asking questions about the precession of Venus, but unfortunately he never responded. This time it was indeed different from his previous actions. (He always responded to my emails quickly before)
    Haha, who knows? Can GR scholars answer the questions I have asked several times? Why doesn't GR need to consider the angle between the planet's orbital plane and the ecliptic plane? If they were vertical, would it still be 8.6"?
    GR is a mathematical model, mine is a physical model, they have similarities, but my theory is simpler and easier to understand.

    3.39
    GR does consider eccentricity, but in its calculation formula, e is not important. In addition, GR has never considered that angle! I have said it N times.
    Because the orbit is close to a circle, it is very susceptible to external influences. The basis of my theory is gravitational waves, which will affect the orbit of Venus.
    This is why I believe 240" is closer to the truth.
    It's the angle I said N times.
    The angle between the planet's orbital plane and the ecliptic plane.
    A more accurate statement is the angle between the planet's orbital plane and the vertical plane of the sun's velocity.
    3.39° is large! You know why I say this after reading my theory.

    https://www.researchsquare.com/article/rs-384421/v1
     

Share This Page