Galaxies colliding

Discussion in 'Hubble' started by Porfiry, Nov 2, 2000.

  1. Porfiry Nomad Registered Senior Member

    Messages:
    4,127
    <!--intro--><b>Image from the Hubble Space Telescope:</b> What appears as a bird's head, leaning over to snatch up a tasty meal, is a striking example of a galaxy collision in NGC 6745. A large spiral galaxy, with its nucleus still intact, peers at the smaller passing galaxy (nearly out of the field of view at lower right), while a bright blue beak and bright whitish-blue top feathers show the distinct path taken during the smaller galaxy's journey. These galaxies did not merely interact gravitationally as they passed one another, they actually collided. <!--/intro-->

    <center ><a href="http://oposite.stsci.edu/pubinfo/PR/2000/34/content/0034w.jpg"><img src="http://oposite.stsci.edu/pubinfo/PR/2000/34/content/0034x.jpg" border=1></a></center>

    When galaxies collide, the stars that normally comprise the major portion of the luminous mass of each of the two galaxies will almost never collide with each other, but will pass rather freely between each other with little damage. This occurs because the physical size of individual stars is tiny compared to their typical separations, making the chance of physical encounter relatively small. In our own Milky Way galaxy, the space between our Sun and our nearest stellar neighbor, Proxima Centauri (part of the Alpha Centauri triple system), is a vast 4.3 light-years.

    However, the situation is quite different for the interstellar media in the above two galaxies - material consisting largely of clouds of atomic and molecular gases and of tiny particles of matter and dust, strongly coupled to the gas. Wherever the interstellar clouds of the two galaxies collide, they do not freely move past each other without interruption but, rather, suffer a damaging collision. High relative velocities cause ram pressures at the surface of contact between the interacting interstellar clouds. This pressure, in turn, produces material densities sufficiently extreme as to trigger star formation through gravitational collapse. The hot blue stars in this image are evidence of this star formation.

    This image was created by the Hubble Heritage Team using NASA Hubble Space Telescope archive data taken with the Wide Field Planetary Camera 2 in March 1996. Members of the science team, which include Roger Lynds (KPNO/NOAO) and Earl J. O'Neil, Jr. (Steward Obs.), used infrared, red, visual and ultravoilet filters to image this galaxy system. Lynds and O'Neil are currently using the Hubble data along with ground-based radio observations to further study the interactions within NGC 6745.

    Image Credit: NASA and The Hubble Heritage Team (STScI/AURA)
    Acknowledgement: Roger Lynds (KPNO/NOAO)
     
  2. Google AdSense Guest Advertisement



    to hide all adverts.
  3. sargentlard Save the whales motherfucker Valued Senior Member

    Messages:
    6,698
    But aren't galaxies generally moving apart from each other due to the acts of anti-gravity. I believe at the rate of 1 million mph. I could be wrong but the Einstein thoery of anti-gravity has been proved to be right and quite active (It's funny that Einstein believed his theory of Anti-gravity was the biggest shame in his carrer).
     
  4. Google AdSense Guest Advertisement



    to hide all adverts.
  5. (Q) Encephaloid Martini Valued Senior Member

    Messages:
    20,855
    But aren't galaxies generally moving apart from each other due to the acts of anti-gravity.

    No.

    I could be wrong but the Einstein thoery of anti-gravity has been proved to be right and quite active

    Yes, you are wrong - Einstein never had a theory of anti-gravity.

    It's funny that Einstein believed his theory of Anti-gravity was the biggest shame in his carrer

    Especially considering no one has heard about it except you.



    :bugeye:
     
  6. Google AdSense Guest Advertisement



    to hide all adverts.
  7. sargentlard Save the whales motherfucker Valued Senior Member

    Messages:
    6,698
    Well upon further reading i have found that Einstein introduced an anti-gravity constant in his equations which made them wrong, if he hadn't he would have been the first to predict an expanding universe. But i recall anti-gravity being proved right and the reason for pushing galaxies apart.
     

Share This Page